Erice, October 28th, 2008

"Channeling 2008"

Charged and Neutral Particles Channeling Phenomena

Observation of high-efficiency axial channeling of high-energy protons in a bent crystal

Vincenzo Guidi

University of Ferrara and INFN - Italy

Ettore Majorana foundation and centre for scientific culture Erice, October 28th, 2008

on behalf of the H8RD22 collaboration CERN; IHEP, JINR, PNPI; INFN: FE, LNL, MI, PG, RM, TS

Outlook

- Crystal preparation
- Crystal characterization
- Axial channeling with positive charges
- Axial channeling with negative charges
- Search for MVR in a single crystal
- Conclusions

Experiment H8RD22

Spokesman: Dr. W. Scandale

□1.92x1.92 cm² telescopes with reading steps 50 μm

¬Spatial resolution:5 μ m

Telescope provided by Como-Trieste group

RSI **79** (2008) 023303

New kind of crystals

An application of crystals would be the collimation of beam halo in next generation of hadron machines (e.g. the LHC)

Circulating Beam

It demands a crystal with a roughness lower than 100 nm on the lateral faces of the crystal

Particles in the halo drift outwards at the rate of ~2 nm per turn. Since the tune is not integer, the particles will hit the crystal every ~10-20 turns and thereby the first impact parameter of the particles onto the crystal will be in the range of ~100 nm (courtesy of V. Previtali and R. Assmann)

Anistropic chemical etching is a feasible way to realize sub-surface damage free crystals entirely by wet chemical methods

Etch rate on different silicon planes for KOH 20% at 40 °C

(100)	(110)	(111)
7.1 μm/h	10.7 μm/h	Negligible

- a) (110) silicon wafer as starting material:
- b) LPCVD deposition of silicon nitride thin layer
- c) Silicon nitride patterning
- d) Etching of Si in KOH solution, silicon nitride acts as masking layer
- e) Silicon strips release
- f) Removal of silicon nitride

Fabrication of crystals

Fabrication of either a multistrip or a batch of strips is possible through wet chemical methods

To appear in a forthcoming issue of JPD: Appl. Phys.

More details are in poster PS2-9 by A. Mazzolari et al.

Structural characterization

Lateral surface (AFM)

High-quality surfaces achieved via ACE

Entry surface (HRTEM)

Sub-nm roughness was achieved

Crystal bending

(a)

(b)

Crystal bending is accomplished through anticlastic deformation

Optical characterization

Optical profilometry with 2 nm resolution

Determination of the primary and anticlastic curvatures

On-beam characterization

- ST9 crystal was characterized with 400 GeV protons in the external line H8 in the SPS
- Planar channeling efficiency is very high

On-beam characterization

Single-pass efficiency of planar channeling exceeds 75% and 85% with quasi-parallel particles

Study on VR

- Dependence of VR defection angle and its spread vs. crystal curvature
- Comparison with theoretical model

To appear in a forthcoming issue of PRL

V. Maisheev Phys. Rev. ST Accel. Beams 10 (2007) 084701

Crystal-size scaling

2006 -> 2 mm strip ST9

2007 -> 1 mm strip ST10

2008 -> 0.5 mm strip ST14

Observation of high
-efficiency planar
channeling and volume
reflection in a 0.5 mm
single silicon strip.
New miniaturization
limit reached.

Radius of curvature is R=4 m Tsyganov radius is R=0.6 m

Channeling

Channeling is the confinement of charged particles traveling through a crystal within atomic planes (planar or axial modes)

Channeling occurs as the trajectory of a particle forms a angle lower than the critical angle

$$\psi_c = \left(\frac{4Z_1Z_2e^2}{pvd}\right)^{1/2}$$

Axial channeling

Axial channeling consists of particle confinement through two modes

Hyperchanneling

Doughnut scattering

AC in a bent crystal

- AC in a bent crystal was studied by A.M. Taratin and S.A. Vorobiev [Pis'ma Zh. Tekh.Fiz. 4 (1978) 947] as a method to steer particles.
- The simulation relying on binary-collision model demonstrated wide spectrum of deflection up to full bending.
- Deflection was ascribed mainly to doughnut scattering rather than to hyperchanneled particles

Earlier experiments

Axial bending for the <110> axis in silicon. The crystal was bent 3.1 mrad in (a) and 6.7 mrad in (b)

A. Baurichter et al, NIM B **119** (1996) 172

Earlier experiment

Particles subjected to hyperchanneling along the <110> atomic string

Axial bending for the <110> axis in silicon. The crystal was bent 3.1 mrad in (a) and 6.7 mrad in (b). In case (a) it resulted in $\alpha = 34.6$

Greenenko-Shul'ga condition

$$\alpha = \frac{l_{\perp}}{R\psi_c} \frac{l}{R\psi_c} < 1$$

I=crystal lenght along the beam $I_{\perp}=$ equalization length R=bending radius $\Psi_c=$ axial-channeling critical angle

 θ_{x} , mrad

450GeV proton beam angular distribution at the exit of a bent silicon crystal with the curvature radius R=30 m near (110) axis:

(a) l=3 mm; $\alpha=0.9$; (b) l=12 mm; $\alpha=3.6$; (c) l=48 mm; $\alpha=14.4$

A.A. Greenenko, N.F. Shul'ga, NIM B 173 (2001) 178

Search for axial channeling

- Beam divergence was 8 μrad
- Planar channeling is achieved first
- Scanning with the cradle
- Near the axis the "Christmas tree" is obtained
- On the axis, all the spots collapse into a single spot

Approaching the <111> axis

Bending was imparted to achieve $\alpha=0.126$

$$\theta_v$$
=40 µrad

$$\theta_{\rm v}$$
=15 µrad

$$\psi_c$$
=21 μ rad

Axial channeling

 θ_v =0 µrad

Simulation under the same condition as in the experiment

Summary

- Particles start interacting with the potential of AC <111>
- AC begins deflecting the particles
- ➢ Partial feed-in of skew planes occurs (α<<1)</p>

AC efficiency

- Efficiency of axial channeling is larger than 30%
- Its capability to deflect particles toward one side is about 90%
- Hyperchanneling contributed to about 2% according to the theory

Channeling with negative particles

- Experiment in the external line H4 at the SPS CERN
- Mixture of μ^{-} and π at 150 GeV
- Beam divergence about 30 μrad
- Crystal ST10 (1 mm along the beam)

Planar channeling and VR

Observation of:

- planar channeling
- volume reflection(planar channeling efficiency about 23%)

Axial channeling

It opens up new possibilities to manipulate negatively charged particles beams

Observation of <u>axial</u> <u>channeling</u> with negative hadrons

A crystal axis is the intersection of several planes

If a particle beam impinges onto the crystal at appropiate angle, it is subject to volume reflections from subsequent planes

Proposed by V. Tikhomirov PLB **655** (2007) 5

Multiple volume reflections

Horizontal angle

- Near-axis condition with ST9 crystal
- Observation of volume reflection by skew planes

Crystal for MVR

For observation of MVR, the optimal orientation of the crystal with respect to beam is

$$\theta_h = \frac{\theta_v}{2}; \theta_v = \frac{\theta}{2}$$

 θ = 400 µrad being the bending angle

Clear observation of multiple volume reflection in a single strip crystal

Very high deflection efficiency, acceptance range to be measured

Systematic study in 2009

Conclusions

- Fabrication of crystals for channeling
- Observation of high-efficiency axial channeling with protons
- Observation of axial channeling with negative charges
- Observation of MVR with protons
- AC and MVR as new schemes for collimation in hadron machines other than PC and VR

Thank you for attention!